

Digital Transformation Forum

December 6th, 2023

Andy Reissmann Cambrica Corp. E: <u>tech-caddy@cambrica.com</u>

Presenting: A journey from an unstructured maintenance department to relying on digital twins

what is a Digital lwin?				
Identical	Digital representation of something real in constant interaction.			
Reality		Digital Twin		
Self-Monitorir	ng			
Warnings				
Simulation				
		Task automation		
		Search		
		Real time status		
		Real time availability		

Why to create one?

In a world competing for limited resources:

2. Digital Twin Concepts

Dusobox Corp. Case study

2. Dusobox Corp.

Identical Digital Twin of an Asset

Asset identification. Asset location Asset functional map

- Fast asset/location/system identification
- Fast job reporting
- Fast asset information retrieval
- Real-time Asset Tracking

2. Asset Digital Twin

Identical Digital Twin of the Storeroom

Spare parts ids. Visual aids. Store locations. Vendor's parts

- Locating pieces
- Inventory availability
- Semi-automatic ordering
- Image recognition

Identical Digital Twin of Technical Knowledge

Digital Documentation Videos. Plant conceptual mapping.

- Fast retrieval of part numbers
- Functional understanding
- Faster troubleshooting
- Bot answers

4. Technical Knowledge Digital Twin

Higher speed

Dashboard (set of variables) Automation (cruise control) Autonomy (collision control)

- A Parallel model is faster than a linear model
- <u>Parallel</u> is not <u>multi-tasking</u>, it is to provide humans with more real-time **context**

VS.

Lower speed

-CONFERENCE EAST

Parallel Model

Machine issues resolution	Context	
Manual	Spare parts availability	

IoT Loc / Warnings

SUNDAY

S +44 12345678

R Knowledge Center

MAIN

Linear Model

- Faster ٠
- Less task with more context ٠

- Slower •
- Many more tasks performed by humans ٠

DIGITAL TRANSFORMATION	BUSINESS ENTERPRISE SOLUTIONS	
Initiative	Project	
Product leader	Project manager	
Proof-of-concept	Business requirements	
Start small, grow big	Start big	
Closer to real time	Period analysis	
Narrow impact	Wider impact	
Personal focus	Corporate focus	
Competency	Competitiveness	
Short time to results	Long time to implement	
Small team	Multi-role team	
Transformation architect	Solution architect	
\$	\$\$\$	

6. Implementation Strategy - Project Management

DIGITAL TRANSFORMATION TECHNOLOGY	FUNCTIONALITY	BUSINESS APPLICATIONS TECHNOLOGY		
Cognitive Services (OCR, speech recognition, visual recognition, text analytics, etc.)	Quick human interaction			
CMMS (Mobile version)	Field Job			
CMS	Documentation Experience Videos			
Bar coding / RFID	Quick Identification			
Generative AI	Virtual Agents (Bots)			
Machine Learning	Machine Monitoring			
ΙοΤ	Sensors / signal analysis			
Process Automation	Approvals/Request			

Enterprise finances and Operations	ERP
Customer Relationship Management	CRM
Maintenance Management	CMMS

7. Technology Strategy - Stack of Technology

Success by Design - Adoption

Success is achieved by using an *Identical Digital Twin*.

Adoption Personal Tear

Team Work

Speed up

9. Implementation Strategy

Onboarding speeds adoption

Onboarding

. Time savings/speed to market

- . Knowledge retention
- Elimination of mistakes
- Process automation, i.e. onboarding, approval, identification, knowledge sharing
- Al accuracy
- . Leadership development

Thanks for your attention...

https://www.cambrica.com/dtimplementationstrategy

